
Second-Order Finite Elements for Deformable Surfaces (Supplementary
Material)
QIQIN LE, Shanghai Qi Zhi Institute, China
YITONG DENG, Dartmouth College, United States of America
JIAMU BU, Tsinghua University, China
BO ZHU, Georgia Institute of Technology, United States of America & Dartmouth College, United States of America
TAO DU, Tsinghua University, China & Shanghai Qi Zhi Institute, China

ACM Reference Format:
Qiqin Le, Yitong Deng, Jiamu Bu, Bo Zhu, and Tao Du. 2023. Second-Order
Finite Elements for Deformable Surfaces (Supplementary Material). In SIG-
GRAPH Asia 2023 Conference Papers (SA Conference Papers ’23), December
12–15, 2023, Sydney, NSW, Australia. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3610548.3618186

1 FORMULA OF BENDING ENERGY AND ITS
DERIVATIVES

We provide detailed formula of our bending energy defined in the
paper. First we define point-wise mean discrete curvature on a piece-
wise smooth curved triangular surface:

𝐻𝑑 (𝑢, 𝑣) = 𝐻𝑎 (𝑢, 𝑣) +
1
|𝑇 |

∫
𝑒

𝜃𝑑𝑠, (1)

where 𝐻𝑎 is the analytical mean curvature of a curved element at
(𝑢, 𝑣). 𝑇 and 𝑒 are the blue diamond domain and the middle edge
in Fig. 1.𝜃 is the local bending angle on 𝑒 . Omitting the bending
stiffness, we define our bending energy on 𝑇 as

𝐸𝑏 =

∫
𝑇

𝐻2
𝑑
(𝑢, 𝑣)𝑑𝑢𝑑𝑣 . (2)

Because 𝜃 goes to zero as the discretization gets refined, we omit
the term including 𝐻𝑑

∫
𝑒
𝜃𝑑𝑠 . But we keep the term with (

∫
𝑒
𝜃𝑑𝑠)2

in order to separately handle face bending and edge bending. Also
we approximate (

∫
𝑒
𝜃𝑑𝑠)2 with (

∫
𝑒
𝜃2𝑑𝑠). Therefore, we get an ap-

proximation that could be easily implemented.

𝐸𝑏 ≈
∫
𝑇

𝐻2
𝑎𝑑𝑢𝑑𝑣 +

1
|𝑇 |

∫
𝑒

𝜃2𝑑𝑠. (3)

We use Gaussian quadrature to approximate the integral in (3).

(3) ≈ 𝐸∗
𝑏
=
∑︁
𝑖

𝑤𝑖𝐻
2
𝑎 (𝑥𝑖 ) +

1
|𝑇 |

∑︁
𝑗

𝑤 𝑗𝜃
2 (𝑥 𝑗 ), (4)

where 𝑥𝑖 , 𝑥 𝑗 and𝑤𝑖 ,𝑤 𝑗 correspond to quadrature points and weights
on 𝑇 and 𝑒 . In our implementation, we applied mid-edge-point-rule
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Fig. 1. The diagram of the bending energy definition

of triangles for quadratic estimation on 𝑇 . For edges, we took two
points for quadratic estimation. Its gradient would simply be

∇𝐸∗
𝑏
=
∑︁
𝑖

𝑤𝑖∇𝐻2
𝑎 (𝑥𝑖 ) +

1
|𝑇 |

∑︁
𝑗

𝑤 𝑗∇𝜃2 (𝑥 𝑗 ) . (5)

We could use the same way to compute its Hessian, but in practice
it suffices to estimate the Hessian by its gradient.

𝐻𝑒𝑠𝑠𝐸∗
𝑏
≈
∑︁
𝑖

2𝑤𝑖∇𝐻𝑎 (𝑥𝑖 )∇𝐻𝑇
𝑎 (𝑥𝑖 ) +

1
|𝑇 |

∑︁
𝑗

2𝑤 𝑗∇𝜃 (𝑥 𝑗 )∇𝐻𝑇
𝑎 (𝑥𝑖 ),

(6)

The scheme ensures the positive-definiteness of the estimated ma-
trix. We found enough to solve Newtonian iterations.

2 DEGREE-OF-FREEDOM LOSS IN LINEAR ELEMENTS
We point out a subtle but significant difference between first-order
and second-order finite elements in this virtual node algorithm. In
the virtual node scheme, each 𝑙𝑖 that splits𝑇𝑖 introduces both virtual
nodes and constraints, and we can view their number difference as
the degrees of freedom reserved for expressing the curve motion.
By inducting on {𝑙𝑖 }, we conclude that this virtual node algorithm
with first-order elements assigns only three degrees of freedom for
the whole curve, regardless of how many 𝑇𝑖 are involved. A similar
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Fig. 2. A paper strip with a crease (red curve) parallel to its long boundary
simulated using first-order elements. Dirichlet boundary conditions fix
nodes on the two long boundaries and prescribe the kinematic motion of
one end of the crease. All other nodes along the crease are supposedly free,
independent nodes.

derivation shows that the curve consists of 𝑂 ( |{𝑙𝑖 }|) degrees of
freedom when second-order elements are used.
The difference seems striking at first glance. In particular, it im-

plies that the curve will be much stiffer when first-order elements
are used, deteriorating the previously mentioned locking issue. The
inherent reason behind this phenomenon is that first-order elements
impose an affine transform that locks the deformation gradient for
every point from the same polygon. Fig. 2 uses a one-layer strip
to present a figurative explanation: when the curve is parallel to
the long boundary of the strip in the rest shape, it is destined to
remain parallel under affine transforms. Therefore, the only de-
grees of freedom left for this curve are trivial translations of the
deformed boundary. This observation gives us another motivation
for advocating higher-order elements in thin-shell simulation.

3 MORE EVALUATIONS
Anisotropic triangulation. Anisotropic triangulation generates

highly skewed triangles that hurt the performance of the finite
element method, as its estimation error is bounded by the diam-
eter of each finite element and the polynomial degrees of each
basis [Johnson 2012]. The situation deteriorates when coupled with
first-order triangular elements because of their piecewise-constant
deformation gradients. We hypothesize that using second-order ele-
ments can remedy this problem. To verify this, we consider a model
problem of a synthetic surface and discretize its (𝑢, 𝑣) parameter
domain Ω into 4 × 16 and 16 × 4 uniform rectangles, respectively,
and each rectangle is further divided into two triangles using its
diagonal. This way, we obtained two anisotropic meshing with or-
thogonal orientations. We then used first-order and second-order
elements to reconstruct the deformation gradient field on both trian-
gulations and visualized their residual errors in Fig. 3. For first-order
elements, the anisotropic orientation affects the reconstruction re-
sults significantly. In particular, we observed much larger errors
when assigning only 4 triangles along the 𝑢 direction (Fig. 3 bot-
tom right), as 𝑧 is a cubic function of 𝑢 and therefore difficult to
approximate with piecewise linear functions. On the other hand, the
influence of anisotropic meshing is much milder for second-order

Fig. 3. Left: a synthetic surface (small inset) x(𝑢, 𝑣) defined as 𝑥 = 𝑢, 𝑦 =

𝑣, 𝑧 = 5.4𝑢3 + 1.8𝑣2 − 0.6𝑢 on a squared domain Ω = [−0.5, 0.5]2. The
color on the surface represents the magnitude of its Jacobian w.r.t. (𝑢, 𝑣)
normalized into [0, 1] with blue and read indicating 0 and 1, respectively.
Right: We discretize the surface with second-order (top row) and first-order
elements on two anisotropic resolutions (middle and right columns). The red-
blue color indicates the normalized magnitude of the Jacobian constructed
from the finite elements, with its absolute error plotted in the small insets.

Fig. 4. Cloth falling on a sphere. Top row are obtained by first-order elements
with respective resolutions of 4 × 4, 4 × 16, and 16 × 4 (left to right). Bottom
row are obtained by second-order elements with respective resolutions of 2
× 2, 2 × 8, and 8 × 2, matching the number of DoFs of its counterpart.

elements, as can be seen from their similar residual errors from two
triangulations (Fig. 3 top row).

Next, we evaluate the effects of anisotropic meshes in a dynamic
setting.We again simulated the previously described sphere example
but with anisotropic discretization and presented the results in
Fig. 4. Simulation with first-order elements exhibits mesh-dependent
artifacts of obvious piecewise-linear edges (Fig. 4 top row). On
the other hand, simulation with second-order elements produces
visually similar results regardless of anisotropic orientations (Fig. 4
bottom row). To summarize, the experiments have confirmed our
speculation that, when simulating deformable codimension-one
surfaces, second-order elements are more tolerant of anisotropicity
in triangulation than first-order elements. We attribute this property
to the expressiveness of quadratic basis functions and their spatially
varying deformation gradients within each element.
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Fig. 5. Comparisons with tr_shell02 This is the extension of Fig.8 in the paper. tr_shell02 failed to solve after 7 frames.
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