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Figure 1: Lantern: Two lanterns (left and right) simulated using our second-order finite element methods on deformable surfaces
coupled with elastic rods. The top row shows the intermediate frames of the lantern’s dynamic motion when suppressed from
above, and the bottom row shows the final frames. Copies of lanterns with white diffusive material on the right provide clearer
demonstration of their geometric structures during deformation.

ABSTRACT
We present a computational framework for simulating deformable
surfaces from planar rest shape with second-order triangular fi-
nite elements. Our method develops numerical schemes for dis-
cretizing stretching, shearing, and bending energies of deformable
surfaces in a second-order finite-element setting. In particular, we
introduce a novel discretization scheme for approximating mean
curvatures on a curved triangle mesh. Our framework also inte-
grates a virtual-node finite-element scheme that supports two-way
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coupling between cut-cell rods without expensive remeshing. We
compare our approach with traditional simulation methods using
linear and higher-order finite elements and demonstrate its advan-
tages in several challenging settings, such as low-resolution meshes,
anisotropic triangulation, and stiff materials. Finally, we showcase
several applications of our framework, including cloth simulation,
mixed Origami and Kirigami, and biologically-inspired soft wing
simulation.
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1 INTRODUCTION
Linear triangles have served as a fundamental computing primi-
tive, accommodating various cloth and shell simulations, ever since
its first success in simulating large-timestep cloth a quarter of a
century ago [Baraff and Witkin 1998]. By discretizing a deformed
surface with planar triangles that share edges and vertices and solv-
ing elasticity using the finite element method (FEM), these triangle
meshes can produce a broad range of visually appealing surface
phenomena, such as cloth wrinkles and paper ceases. However,
linear triangles contain several inherent weaknesses. First, in terms
of its geometric expressiveness, the planar assumption of each trian-
gle requires a large number of elements to approximate a complex,
curved surface. Bending deformation can only be expressed with
the dihedral angle between triangles that share an edge. Remesh-
ing operations, sometimes requiring highly anisotropic elements,
must be performed frequently to characterize bending behaviors
that are not aligned with mesh edges (e.g., see Narain et al. [2012]).
Second, in terms of dynamics, linear triangles assume a piecewise
constant deformation gradient within each element, resulting in a
demanding prerequisite on the mesh quality (e.g., see Shewchuk
[2002]). The simulation accuracy will be negatively affected if a
mesh contains low-quality triangles. Third, the linear geometry and
constant deformation gradient further cause kinematic locking arti-
facts on a triangle mesh, especially when its resolution is low, which
produces unnatural bending and overly damped cloth dynamics. In
short, simulations on linear triangles are highly mesh-dependent.
High-quality meshes (in terms of both mesh resolution and element
aspect ratio) are essential for accurate simulations.

In recent years, high-order triangles have sparked interest in
computer graphics research. These methods stem from the high-
order finite element analysis in mechanical engineering [Johnson
2012], by placing multiple degrees of freedom on edges or interi-
ors of finite elements. In this way, a triangle is no longer planar
but rather has its shape described by a high-order polynomial and
approximated with high-order basis functions. As pointed out by
Schneider et al. [2018], the simulation accuracy can be decoupled
from the mesh quality when employing high-order FEM schemes.
Following this thread, a natural next step is to explore the efficacy
of high-order methods in simulating deformable surfaces, with a
particular focus on addressing the various mesh-dependent bend-
ing, locking, and coupling artifacts in cloth or thin-shell simulation.
Nonetheless, devising a high-order cloth and shell simulator to
tackle these highly dynamic and nonlinear physical problems is
difficult. One of the main challenges is to appropriately define the
stretching, shearing, and bending energy and their discretization
that fits a high-order discretization. To begin with, a curved tri-
angle can bend due to its intrinsic non-planar shape. In addition,
two curved triangles connect on a curved edge, which voids the
possibility of characterizing bending with dihedral angles. To the
best of our knowledge, there exists no practical algorithm that can

support cloth and shell simulations with high-order finite elements
for graphics applications.

Filling such a gap, our paper proposes a second-order deformable
surface simulation algorithm on curved triangle elements. At the
heart of our approach is a novel elastic energy definition in conjunc-
tion with its discretion on non-planar triangles to accommodate
the second-order simulation of elastic surfaces. Furthermore, we
augment our simulator with a novel scheme to support second-
order cut-cell finite elements, enabling native two-way coupling
with elastic rods in our simulation. We evaluate our simulation
on different test scenarios to demonstrate its merits in producing
dynamic, smooth, and deformable surface simulations.

Our main contributions include the following:

• We present a discretization scheme for mean curvature and
its induced bending energy on curved triangulation of smooth
surfaces;

• We present a novel virtual-node finite element scheme to
couple deformable surfaces with cut-cell curves, enabling
creases and coupling with elastic rods at flexible locations;

• We validate the efficacy of the proposed framework on low-
resolution, low-quality triangulation and compare it with an
existing open-source finite-element implementations,

• We demonstrate the application of our method in cloth simu-
lation,mixedOrigami and Kirigami, and biologically-inspired
soft-wing simulation.

2 RELATEDWORK
Deformable-surface simulation. Deformable-surface simulation

in computer graphics originated from the early endeavors in cloth
animation [Baraff and Witkin 1998; Breen et al. 1994; Eberhardt
et al. 1996; Terzopoulos et al. 1987], which model cloth as an elastic
body. To counteract the numerical instability evoked by the high
stiffness necessary for stretch resistance, Baraff and Witkin [1998]
introduced an implicit temporal-integration scheme to enable large
time steps with high stability, at the cost of significant numerical
damping. To reduce such artifacts, several implicit-explicit solving
schemes [Boxerman 2003; Eberhardt et al. 2000; Stern and Grinspun
2009] are developed by treating stiff and non-stiff forces differently.
Recently, a line of projective dynamics methods [Bouaziz et al. 2014;
Ly et al. 2020] has also been devised to solve the implicit integration
problem from the variational perspective efficiently. To discretely
model the deformation and bending mechanics of thin shells, a
number of convenient hinge-based models have been developed
[Bridson et al. 2003; Gingold et al. 2004; Grinspun et al. 2003];
we adopt the paradigm of Grinspun et al. [2003] that computes
the bending energy by comparing squared mean curvatures. To
date, a large gamut of thin shell phenomena have been successfully
captured, including plastic folding and crumpling [Narain et al.
2013], large-scale tearing and fracture [Busaryev et al. 2013; Pfaff
et al. 2014], interaction with ambient fluid [Chen et al. 2013; Sifakis
et al. 2008], reaction to environmental stimuli [Chen et al. 2018], etc.
In addition, the accurate and affordable simulation of thin shells has
facilitated a range of inverse design tasks, such as the natural shape
of shells [Ly et al. 2018], FlexMaps [Malomo et al. 2018], deployable
X-shells [Panetta et al. 2019], and inflatable surfaces [Panetta et al.
2021].
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Higher-order methods. High-order discretization schemes and al-
gorithms offer a competitive alternative to their low-order counter-
parts in resolving physical problems at higher fidelity at a compara-
ble computational cost [Schneider et al. 2022; Vincent and Jameson
2011]. For example, higher-order continuous Galerkinmethods [Vos
et al. 2010; Zhou and Lu 2005] and discontinuous Galerkin methods
[Huynh et al. 2014; Jameson 2011; Wang et al. 2013] are developed
to improve accuracy and efficiency in computational structural
or fluid mechanics. Interested readers can refer to Johnson [2012]
for a comprehensive discussion. Similarly, higher-order schemes
have been bridged with the finite volume [Barth and Frederickson
1990; Harten et al. 1997] and finite difference [Shu 2003; Vasilyev
2000] paradigms. As identified by Vincent and Jameson [2011], a
hindering challenge for adopting these high-order schemes is the
generation of unstructured, high-order (curved) meshes. A number
of works take on this challenge by directly generating meshes from
CAD models [Dey et al. 1999] or by post-processing linear meshes
[Ims et al. 2015]. In hybrid Lagrangian-Eulerian simulation, meth-
ods that transfer higher-order velocity modes have been shown
to provide better energy and momentum conservation for both
fluid [Jiang et al. 2015] and solid materials [Hu et al. 2018]. Higher-
order level-set methods have also been developed to enhance mass
conservation in multi-phase simulation [Moghadam et al. 2016],
promote smoothness in surface construction [Bajaj et al. 2007], and
preserve sub-grid structures [Nave et al. 2010].

Higher-order shells. Exploration of higher-order methods for
shell simulation keeps being an important and major topic espe-
cially for structural analysis in mechanical and civil engineering.
Previous works primarily target at solving (quasi-)static problems
with small deformation. Many previous works [Batoz et al. 1980;
Belytschko et al. 1984; Macneal 1982; Phaal and Calladine 1992; Sze
and Zhu 1999; Tessler and Hughes 1985; Zhongnian 1992] proposed
shell elements to achieve an accurate and consistent solution with
the assumption of geometric linearity. To accurately present the
curved mid-surface of a shell, lots of conventional shell elements
introduced rotational degrees of freedom [Bathe and Ho 1981; Batoz
et al. 1980; Belytschko et al. 1984; Campello et al. 2003; Macneal
1982; Tessler and Hughes 1985; Zhongnian 1992]. This category also
includes lots of existing shell algorithms in commercial software,
e.g., S4 and S4R in ABAQUS [Abaqus 2011]. In computer graphics,
subdivision-surface shells are of particular interest to researchers
[Cirak et al. 2000]. A series of works have been performed to solve
static and dynamic problems using different subdivision strategies,
e.g. Catmull–Clark subdivision [Wawrzinek et al. 2011].

Previous higher-order shell elements have explored widely the
methods of improving accuracy and consistency for simulating
loads and displacements for (quasi-)static shells with nonzero thick-
ness. However, scenes in graphic application usually require meth-
ods supporting stable simulation for dynamic large-scale defor-
mation and convenient coupling with other structures, which we
believe cannot be easily realized with the existing approaches.

The assumption of material or geometric linearity often leads to
a visually implausible shape when simulating large deformations.
Also, rotational DoFs suffer from potentially slow convergence and
make crease handling considerably more expensive [Hu et al. 2021].
Finally, handling flexible coupling with creases or rods in some

of these higher-order FEMs is typically challenging. For example,
Wawrzinek et al. [2011] and Cirak et al. [2000] assumed C1 con-
tinuity on thin shells, so handling creases is not straightforward.
Laurent and Rio [2001] used only 9 DoFs to model a curved triangle,
which would lead to incompatible boundary conditions if coupled
with cut-cell creases or rods.

3 CONTINUOUS MODEL
Kinematics. We consider a deformable surface in R3 with zero

thickness and a planar rest shape Ω ⊂ R2. We use X = (𝑢, 𝑣) ∈ Ω
to denote a material point in the rest shape. A spatial-temporal
function x : Ω × R+ → R3 defines the motion of each material
point X(𝑢, 𝑣) at time 𝑡 as x(X(𝑢, 𝑣), 𝑡) or x(X, 𝑡) for brevity. We
use x(𝑡) to denote the surface at time 𝑡 , i.e., x(𝑡) = x(Ω, 𝑡). The
velocity and acceleration of each material point are denoted as
v = ¤x and a = ¥x. The Jacobian of a surface point w.r.t. its (𝑢, 𝑣)
coordinates is denoted as F with its subscript indicating the surface,
e.g., Fx(𝑡 ) : Ω → R3×2 returns the Jacobian of the material point
X(𝑢, 𝑣) at time 𝑡 .

Dynamics. Our dynamics model is

𝜌a(X, 𝑡) = fint (X, 𝑡) + fext (X, 𝑡), ∀(𝑢, 𝑣) ∈ Ω, 𝑡 ≥ 0, (1)

where 𝜌 is the material density. We use fint and fext to denote the
internal and external force densities exerted on the rest shape. We
assume that fint consists of the stretching and shearing force fss
and the bending force fbd, both of which are conservative forces
derived from the corresponding potential energy 𝐸ss and 𝐸bd. We
complement Eqn. (1) with time-varying Dirichlet boundary con-
ditions x(X, 𝑡) = x𝐷 (X, 𝑡) on Γ𝐷 ⊆ 𝜕Ω where x𝐷 prescribes the
kinematic motion on X(Γ𝐷 ).

Stretching and shearing energy. We follow previous works [Kim
and Eberle 2020] to assume a hyperelastic material model. There-
fore, the strain energy for stretching and shearing can written as
𝐸ss =

∫
Ω Ψss (𝑢, 𝑣)𝑑𝑢𝑑𝑣 , where the energy density Ψss is defined as

a function of the Green strain tensor 𝐸 = 0.5(F⊤x Fx − I). In our
implementation, we applied St. Venant-Kirchhoff model [Sifakis
and Barbic 2012].

Bending energy. We consider the bending energy as an integral
𝐸bd =

∫
Ω Ψbd (𝑢, 𝑣)𝑑𝑢𝑑𝑣 of the squared mean curvature [Grinspun

et al. 2003]:

Ψbd (X(𝑢, 𝑣)) = 𝑘𝐻2
x(𝑡 ) (𝑢, 𝑣), (2)

where 𝐻x(𝑡 ) : Ω → R stands for the mean curvature and 𝑘 the
bending stiffness.

4 NUMERICAL DISCRETIZATION
4.1 Variational Form
We discretize Enq. (1) with the backward Euler time integration,
leading to the following energy minimization problem [Kane et al.
2000]:

min
x𝑛+1

∫
Ω

𝜌

2ℎ2 ∥x
𝑛+1 − y𝑛 ∥2𝑑𝑢𝑑𝑣 + 𝐸ss [x𝑛+1] + 𝐸bd [x𝑛+1] (3)

subject to the Dirichlet boundary conditions. Here, the superscript𝑛
indexes the time step withℎ its step size. y𝑛 = x𝑛+ℎv𝑛+ℎ2𝜌−1f𝑛ext is
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Figure 2: Top: Approximating a saddle surface with first-
order (left) and second-order (right) finite elements whose
triangulation is shown in the insets. Bottom: The basis func-
tion landscape (blue surfaces) and its location (black dots) of
a single first-order or second-order element.

a constant during optimization. Solving x𝑛+1 defines the surface at
the end of the n-th time step with its velocity v𝑛+1 = ℎ−1 (x𝑛+1−x𝑛).

4.2 Higher-Order Finite Elements
We use the finite element method to discretize Eqn. (3). We assume
Ω is a polygonal domain and partition it into triangles {𝑇𝑗 }. These
triangles together contain 𝑁 basis functions 𝜙𝑖 : Ω → [0, 1] cen-
tered at nodes (𝑢1, 𝑣1), (𝑢2, 𝑣2), · · · , (𝑢𝑁 , 𝑣𝑁 ) ∈ Ω. Depending on
the order of finite elements, these nodes may include triangle ver-
tices, edge midpoints, or triangle centers. The basis functions can
be linear, quadratic, or higher-order polynomials on each triangle
(Fig. 2) and can be precomputed. For any function 𝑓 on Ω, we de-
fine 𝑓 , an approximation to 𝑓 , as the sum of all basis functions 𝜙𝑖
weighted by predefined nodal values 𝑓𝑖 , i.e.,

𝑓 (𝑢, 𝑣) ≈ 𝑓 (𝑢, 𝑣) =
∑︁
𝑖

𝑓𝑖𝜙𝑖 (𝑢, 𝑣), ∀(𝑢, 𝑣) ∈ Ω, (4)

and it is common to use 𝑓𝑖 = 𝑓 (𝑢𝑖 , 𝑣𝑖 ) whenever possible. 𝑓 is a
continuous function on Ω, allowing us to approximate 𝑓 at any
(𝑢, 𝑣) ∈ Ω with finite degrees of freedom 𝑓1, 𝑓2, · · · , 𝑓𝑁 (Fig. 2). Note
that a triangle becomes curved in a second-order finite element.
The integral of a function 𝑓 can be computed by quadrature rules:

𝐼Ω [𝑓 ] =
∫
Ω
𝑓 𝑑𝑢𝑑𝑣 ≈

∑︁
(q𝑘 ,𝑤𝑘 )

𝑤𝑘 𝑓 (q𝑘 ), (5)

where {q𝑘 ∈ Ω} are the quadrature points and 𝑤𝑘 their weights.
We discretize X and x at triangle nodes to obtain X𝑖 , x𝑖 ∈ R3×𝑁 , on
which we use the second-order finite element scheme to discretize
the energies in Eqn. (3). The main challenge is to discretize the
bending energy due to curved triangles, which we detail below.

4.3 Energy Discretization
Previous works [Baraff and Witkin 1998; Gingold et al. 2004; Grin-
spun et al. 2003] have studied discrete bending energy on triangular
surfaces extensively and formulated it as a function of dihedral an-
gles. Generalizing this idea to second-order elements is non-trivial

Figure 3: A visual explanation of the discrete mean curvature
measure (Def. 4.1) on a surface discretized with two planar
(left) and curved (right) triangles. The triangulation in the
(𝑢, 𝑣) parameter space is shown in the middle inset, and the
dashed lines further subdivide each triangle to distribute av-
erage edge curvature measure. A Borel set (not shown) in R3

intersects the surface onto two of such subdivided triangles
(darker blue) and fully encloses the edge of interest, result-
ing in the area of the gray surface to be counted toward the
discrete mean curvature measure.

for two reasons: the discretized surface now consists of curved
triangles with nonzero curvatures, and these triangles now meet at
quadratic edges with varying dihedral angles. To resolve them in
a principled way, we recall the discrete mean curvature measure
from Cohen-Steiner and Morvan [2003] and generalize it to curved
triangular surfaces:

Definition 4.1 (Discrete mean curvature measure). Consider a dis-
cretized surface Π built from a second-order finite element partition
{𝑇𝑗 } of its (𝑢, 𝑣)-parametrization in Ω. For every (Borel) set 𝐵 ⊂ R3,
we define the discrete mean curvature measure 𝛼Π (𝐵) as

𝛼Π (𝐵) =
∑︁
{𝑇𝑗 }

∫
𝐵∩Π (𝑇𝑗 )

𝐻Π (p)𝑑p +
∑︁
{𝑒𝑖 𝑗 }

𝐴(𝐵 ∩ Π(𝑒𝑖 𝑗 )), (6)

where 𝐻Π (p) is the mean curvature of Π at a surface point p, 𝑒𝑖 𝑗
is the edge shared by the triangles 𝑇𝑖 and 𝑇𝑗 , and 𝐴(𝐵 ∩ {Π(𝑒𝑖 𝑗 )})
computes the signed area swept by the arc spanned by the outward
unit normals of Π(𝑇𝑖 ) and Π(𝑇𝑗 ) along the edge 𝐵 ∩ {Π(𝑒𝑖 𝑗 )}. The
sign of 𝐴 is positive if 𝑒𝑖 𝑗 is convex and negative if concave.

Fig. 3 shows a geometric interpretation of the second term in
𝛼Π (𝐵), referred to as the “tube formula” in Cohen-Steiner and
Morvan [2003]. The definition states that the contribution of an
edge to the mean curvature equals the (incomplete) signed surface
area of the tube. Our 𝛼Π (𝐵) is a natural extension of the discrete
mean curvature measure in first-order elements, in which case the
first term in 𝛼Π (𝐵) vanishes, and the second term becomes the
dihedral angle times the edge length (Fig. 3 left).

We now return to discretizing the bending energy with the dis-
crete mean curvature measure. We aim to provide a discretization
scheme that can be computed with quadrature on elements. To
achieve this, it is sufficient to explain how to obtain an estimate of
𝐻x̂𝑛+1 at each quadrature point q𝑘 , where the hat symbol indicates
the surface is discretized with FEM in Eqn. (4). We first subdivide
each 𝑇𝑗 into three triangles 𝑇𝑘

𝑗
using the center of 𝑇𝑗 , where 𝑘 de-

notes the triangle edge index. Next, for each edge 𝑒𝑖 𝑗 , we consider a
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Figure 4: Left: a sample triangulation of a domain Ω with
a crease (red curve) splitting multiple triangular elements.
Middle and right: One such triangle is split into two linear
(middle) and curved (right) triangles accompanied by extra
virtual nodes (black dots, respectively). The crease moves
passively with the deformation from triangles.

Borel set 𝐵𝑖 𝑗 whose intersection with x̂𝑛+1 is exactly x̂𝑛+1 (𝑇𝑘 (𝑒𝑖 𝑗 )
𝑖

)
and x̂𝑛+1 (𝑇𝑘 (𝑒𝑖 𝑗 )

𝑗
) (Fig. 3). Eq.6 suggests the following mean curva-

ture estimate for any (𝑢, 𝑣) ∈ 𝑇
𝑘 (𝑒𝑖 𝑗 )
𝑖

∪𝑇
𝑘 (𝑒𝑖 𝑗 )
𝑗

:

𝐻x̂𝑛+1 (𝑢, 𝑣) = 𝐻x̂𝑛+1 (𝑢, 𝑣) +
𝐴(𝐵𝑖 𝑗 ∩ x̂𝑛+1 (𝑒𝑖 𝑗 ))

|x̂𝑛+1 (𝑇𝑘 (𝑒𝑖 𝑗 )
𝑖

) ∪ x̂𝑛+1 (𝑇𝑘 (𝑒𝑖 𝑗 )
𝑗

) |
, (7)

where the denominator computes the surface area of the two de-
formed subdivided triangles. The intuition is that {𝐵𝑖 𝑗 ∩ x̂𝑛+1}
constitutes a partition of the surface x̂𝑛+1. Therefore, if we uni-
formly distribute the edge contribution 𝐴 onto every point in the
two adjacent triangles, integrating 𝐻 on the whole surface x̂𝑛+1

equals 𝛼x̂𝑛+1 (R3) as desired. We detail our implementation of the
bending energy in the supplementary material.

5 COUPLING
We now extend our numerical model in Sec. 4 to couple surfaces
with embedded curves with potential applications in simulating
creases, wrinkles, or elastic rods. We skip the analysis on the con-
tinuous model and present our results in the discretized form. For
simplicity, we will illustrate the basic idea using one curve on the
planar rest surface.

Geometric representation. We recall the domain Ω with a triangu-
lation {𝑇𝑖 } and consider a curve embedded in Ω with both ends on
its boundary. We discretize the curve by a series of line segments
{𝑙𝑖 } connecting the intersections of the curve with triangle edges,
where the subscript 𝑖 is the index of the triangle that contains 𝑙𝑖
(Fig. 4). Each 𝑙𝑖 now cuts 𝑇𝑖 into two pieces 𝑇 𝑙

𝑖
and 𝑇 𝑟

𝑖
that can

deform in their own ways as long as they remain coincident on 𝑙𝑖 ,
which can also stretch or bend along with the surface deformation.

Cut-cell creases. An immediate solution here is to sub-divide
every quadrilateral𝑇 𝑙

𝑖
and𝑇 𝑟

𝑖
into two triangles and apply Sec. 4 to

the new triangulation. However, this conceptually simple method
suffers from the complexity of adaptive remeshing. Instead, we
ground our method on the virtual node algorithm [Bedrossian et al.
2010] to avoid the expensive remeshing of Ω. Consider a specific 𝑙𝑖
that splits 𝑇𝑖 into 𝑇 𝑙

𝑖
and 𝑇 𝑟

𝑖
. Each of them obtains copies of nodes

in 𝑇𝑖 which control its deformation (Fig. 4 middle and right).
To ensure𝑇 𝑙

𝑖
and𝑇 𝑟

𝑖
remain coincident on 𝑙𝑖 after deformation, it

is sufficient to check they agree on the positions of a finite number

of nodes in 𝑙𝑖 . For example, when 𝑇𝑖 is a first-order finite element,
𝑙𝑖 remains a line regardless of the deformation, whose location can
be fully determined by checking its two endpoints. Noting that the
(𝑢, 𝑣)-coordinates of these endpoints are known beforehand, we
conclude from Eqn. (4) that their deformed positions are linear on
the degrees of freedom at virtual nodes. Therefore, such constraints
are linear, which forms a large linear equality constraint Ax = b
in Eqn. 3. Here, the notation has flattened x into a column vector,
and A is sparse and typically has much fewer rows than columns.
From counting the rows and columns of A, we notice that this
combination of virtual node schemes with second-order instead of
first-order finite elements is not arbitrary. Interestingly, coupling it
with first-order elements leads to a loss of degrees of freedom on
the curve, which we detail in the supplementary material.

In summary, the full numerical method in Sec. 4 remains valid
but requires three modifications: First, the quadratures need to
be sampled on 𝑇 𝑙

𝑖
and 𝑇 𝑟

𝑖
instead of on the full 𝑇𝑖 . Second, we

need to add extra bending energy along 𝑙𝑖 . Finally, the numerical
optimization now includes slightly more linear equality constraints,
which requires us to solve a symmetric indefinite KKT system at
each Newton iteration [Boyd et al. 2004].

Dynamic curves. Handling dynamic curves, e.g., elastic rods with
their own density and elasticity, requires small algorithmic updates
on the method stated before. First, we add conventional spring
energy between neighboring vertices on a rod to our previously
defined potential energy. Second, we add to 𝐸bd the bending energy
from the curve introduced by Bergou et al. [2008], which is defined
by integrating the squared curve curvature along the curve.

6 RESULTS
6.1 Implementation Details
We implement our method in C++ on a personal workstation with
moderate hardware specifications (12 CPU cores and 16 GB mem-
ory). We implemented Newton’s method with the standard line
search and Hessian definiteness fix techniques [Nocedal andWright
2006] and used SuiteSparse [Davis 2023] to solve sparse linear sys-
tems. We used the geometry library from Sharp et al. [2019] for
geometry processing like triangulation and subdivision. Contact
and collision were handled with our implementation of IPC [Li
et al. 2020]. Simulating one timestep in our largest experiment (80K
second-order elements with 480K degrees of freedom) took 30 sec-
onds to finish. The total time for running each experiment ranges
from several minutes to at most two hours.

6.2 Evaluation
We compare our approach with first-order elements and analyze
their differences in handling low-quality triangulation, kinematic
locking, and computational cost. Additionally, we compare our
implementation with other higher-order methods implemented in
OOFEM, an open-source finite element implementation.

Low-quality meshing. For the finite element method, the choice
of basis functions and the mesh quality are two critical factors that
jointly affect its numerical performance [Johnson 2012]. Because
quadratic basis functions are more expressive than linear ones, we
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Figure 5: Cloth falling on a sphere. Top row are obtained
by first-order elements with respective resolutions of 4 × 4,
4 × 16, and 16 × 4 (left to right). Bottom row are obtained
by second-order elements with respective resolutions of 2
× 2, 2 × 8, and 8 × 2, matching the number of DoFs of its
counterpart.

speculate that our approach is more tolerant of low-quality meshes
than traditional first-order methods. An immediate implication
is that we anticipate second-order elements to generate similar-
quality simulation results as first-order elements but with a coarser
triangulation. To validate this hypothesis, we consider a motivat-
ing example of a piece of cloth falling on a static, rigid sphere.
We deliberately used an extremely coarse triangulation and visual-
ized the simulation results from first-order elements (32 triangles)
and second-order elements (8 triangles) in Fig. 5. The planar trian-
gles from first-order elements essentially quantized the underlying
smooth motion, and noticeable artifacts from the piecewise-linear
shapes are evident under such a low resolution. On the other hand,
the curved triangles captured the motion more convincingly and
exhibited a smoother surface, thanks to the expressiveness of their
quadratic basis. This experiment indicates that our method can
be a promising approach when high-resolution meshes are unaf-
fordable. We include more experiments about the performance of
our finite element methods on low-quality triangulations in the
supplementary material.

Kinematic locking. Strong stretching coefficients rigidify first-
order triangular elements due to their planar nature and results in
the kinematic locking issue, i.e., a multi-facet surface that can only
bend along prescribed edges. On the contrary, our model uses bend-
able curved elements that alleviate the strong coupling between
stretching and bending. We provide results of two experiments to
illustrate this property. In each experiment, the mesh resolutions
were chosen so that linear and quadratic elements created a similar
number of nonzeros in the energy Hessian, resulting in a similar
computational time in total (Table. 1).

In the first experiment, we simulated a scene Saddle with four
groups of test cases (Fig. 6). Each group compares the quadratic
elements on a square with linear ones. The resolutions of quadratic

and linear cases are 10 × 10 × 2 and 30 × 30 × 2 triangles. We vary
the stretching stiffness (Young’s modulus) across groups. We fix
the locations of a pair of diagonal corners and simulate the motion
of the square under gravity with an expectation of a saddle surface.
The results are shown in Fig. 6. We adjust the bending stiffness such
that when the diagonal edges are alignedwith the bending direction,
the quadratic and linear cases produce similar results. However,
when the diagonal edges are orthogonal to the bending direction,
the linear elements clearly show resistance to bending. This result
shows the bending ability of linear elements is dependent on the
triangulation of the surface. In contrast, the quadratic elements are
better able to bend despite the same direction of triangulation. This
observation suggests that our second-order approach remedies the
kinematic locking issue.

In the second experiment, we simulated a scene Curtain with
two groups of comparisons at different resolutions. Each group
simulated a swinging curtain using linear and quadratic elements.
Fig. 7 shows that under a similar computational time budget, our
method produced a smoother surface at each frame that contrasts
the polygonal artifacts in the linear elements caused by kinematic
locking. The result suggests that our method is practical for allevi-
ating kinematic locking without performance degradation.

Scene Saddle Curtain

Element type Q-10 L-30 Q-30 L-90 Q-60 L-180

DoFs 1323 2883 11163 24843 43923 98283
NNZ 88K 106K 803K 949K 3227K 3793K

Time (s) 0.029 0.038 0.768 0.820 3.480 3.513
Table 1: Computational cost of the linear (“L”) and quadratic
(“Q”) elements in Fig. 6 Saddle and Fig. 7 Curtain. “NNZ”
stands for the number of nonzeros in the resultant energy
Hessian. The number after “Q-” and “L-” indicates the mesh
resolution.

Comparison with other higher-order elements. As mentioned in
the related works, lots of previous higher-order shell elements as-
sumed geometric linearity, which often leads to a visually implausi-
ble shape with large deformation. To illustrate this, we compare our
method with triangular shell elements in OOFEM [Patzák 2012], an
open-source finite element implementation. We compare with three
linear elements tr_shell02, tr_shell01 and RerShell which
are not suitable for large deformation due to their assumption on
geometric linearity and their lack of coupling between stretching
and bending. Given a plate square mesh (80 × 80 × 2 triangles) on
the XY-plane, we fix one boundary to have it swing under gravity.
All three types of elements showed artifacts with large deformation
(Fig. 8 and supplementary material).

For nonlinear shell elements, rotational DoFs often leads to con-
vergence issues [Hu et al. 2021]. We experimented Tr2Shell7, the
only triangular element in OOFEM that supports large deformation,
which showed slow convergence in a cantilever beam test with
moderate loads. On a 5 × 5 × 2 (50 elements, 6 nodes per element,
7 DoFs per node) shell, with 0.03/0.04/0.044 dimensionless loads



Second-Order Finite Elements for Deformable Surfaces SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

per node on free edge, it requires 25/84/586 iterations to converge
with Newton’s method and failed to converge with larger loads. In
comparison, our method converged within 5 iterations in a similar
problem.

6.3 Applications
We present seven examples in cloth simulation, mixed Origami and
Kirigami structures, and their coupling with elastic rods.

Large curtain: This example simulates a curtain on 200 × 200 × 2
triangular elements (Fig. 9). The curtain swings under gravity while
five evenly-spaced rings on top of the curtain move along a rod. The
simulation shows an elastic, highly vibrant curtain with detailed
wrinkles.

Lanterns: This example simulates two lanterns (Fig. 1) with a
cylindrical mesh on a resolution of 200 × 200 × 2 triangles. There
are 20 rods traversing the cylinder and no edge bending energy on
edges where rods reside. The bottom of the cylinder is set to be
fixed, and the top moves downward to squeeze the whole structure.
With different stretching stiffness, the cylinders deform to different
shapes : a smooth ellipsoid and a shape with curved creases.

Bat: This example simulates a bat wing on a mesh with 3600
elements. Elastic rods are inserted in the mesh by virtual nodes
to simulate arms and fingers (Fig. 12). External periodic forces are
applied at joints to simulate flying movements of the bat.

Tori: This example simulates a piece of cloth with 459 elements
falling on two tori from above (Fig. 10). The cloth eventually rests
on both tori and shows a smooth surface capturing the underlying
tori shapes with the small number of curved triangles.

Origami and Kirigami: We present three more examples that
simulate the dynamics of mixed Origami and Kirigami structures.
Fig. 14 shows a paper-art work whose structure consists of an array
of slanted paper tapes with Origami creases at linearly interpolated
locations. The Kirigami design is simulated with only 572 triangles,
yet it manifests smooth, large-scale elastic behaviors with visu-
ally appealing deformation and vibration. Fig. 13 shows a second
Kirigami example on a 32 × 32 square mesh under gravity. Finally,
we simulated another Kirigami design of a paper discretized into
600 triangular elements (Fig. 11). Folding the paper along its major
crease produces a stair structure resulting from the spatially vary-
ing crease location at each paper tape. One of the four boundaries
of the paper is fixed to a static rod so that when spinning the paper
dynamically, it automatically folds to generate the final Kirigami.

7 CONCLUSIONS
This paper presented a novel second-order deformable-surface sim-
ulation algorithm. The framework discretizes a deformable surface
using finite elements on curved triangles, which overcomes the
prolonged limitations of linear element methods in tackling prob-
lems of anisotropic bending, locking, and low-resolution dynam-
ics. We compared our approach with other state-of-the-art finite
element methods and demonstrated its efficacy in terms of simu-
lation details and smoothness. Our method facilitates simulations
on low-resolution or low-quality meshes. This feature opens up

new possibilities to incorporate our method into the various inter-
active design, visualization, and geometry processing pipelines. It
provides high-fidelity simulation results based on imperfect mesh
data. Thanks to the second-order nature of our discretization, our
method is particularly suited for producing authentic simulations
on Origami and Kirigami designs, which were challenging for tra-
ditional thin-shell methods due to their mixed creases, wrinkles,
low-resolution meshes, and anisotropic mesh elements.
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Figure 6: Saddle: This figure demonstrated the ability of quadratic elements to alleviate kinematic locking with various young’s
modulus (E). The first two rows are linear elements with diagonal edges aligned with and orthogonal to the bending direction.
The next two rows are quadratic elements with such edges. The linear elements are on a resolution of 30 × 30 × 2 triangles, and
quadratic elements are of 10 × 10 × 2 triangles. The triangulations of the surfaces are visualized by red/white/grey triangles.

Figure 7: Curtain: Quadratic elements at 30 × 30 (60 × 60) resolution are compared with linear elements at 90 × 90 (180 × 180)
resolution. The curtain swings under gravity with 6 evenly-spaced positions on the top moving horizontally. The close-ups of
location where locking is apparent are shown in blue boxes.

Figure 8: Comparison with other higher-order elements: Comparison of our method (top) with RerShell (middle) and tr_shell01
(bottom). A square swings under gravity with one side fixed. Only our method presents reasonable result. The other two
elements deform incorrectly at the bottom of the surface.
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Figure 9: Large curtain: The left figure shows an interme-
diate frame from simulating the curtain with 200 × 200 × 2
triangles with textures. The right figure displays the same
frame without texture to showcase the rich wrinkles.

Figure 10: Tori: A piece of cloth simulated with 459 elements
is in contact with two solid tori (top-right inset) and gently
slips.

Figure 11: Stairs: A Kirigami design simulated with 600 ele-
ments. Starting from a planer rest shape (top left), the paper
was pulled by its creases with non-zero rest angles (middle
and bottom left) to form a stair-like kirigami (right).

Figure 12: Bat: A bat wing composed of elastic rods and shells.
The motion is controlled by rods representing "arms". See
the video for more details.

Figure 13: Kirigami: AKirigami design simulated with 32×32
elements. Starting from a planer rest shape (top right), the
shell drooped under gravity.

Figure 14: Paper art: A paper-art example assembled by ten
paper strips with creases is simulated using 572 elements.
The left ends of the strips are fixed, and the right ends move
leftward to force the strips to pop upward. The right rows
are middle frames of the simulation.
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